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Abstract— This study employs a multi-sensor approach, 

combining RGB photogrammetry, LiDAR, and drone 

thermography, to investigate the prehistoric site of Thermi, 

Lesbos. RGB imagery provided high-resolution mapping, 

LiDAR-derived DTM identified microtopographic anomalies, 

and thermal imaging detected subsurface features based on 

thermal inertia variations. Statistical and Kernel Density 

Analysis revealed a correlation between thermal anomalies and 

architectural remains, validating the effectiveness of UAV 

thermography for archaeological prospection. Results 

emphasize the importance of adaptive flight planning, as 

environmental factors significantly influence thermal anomaly 

visibility. This study demonstrates that integrating 

multispectral sensors and seasonal data acquisition can further 

refine UAV-based archaeological surveying for enhanced 

precision. 
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I. INTRODUCTION  

The integration of Unmanned Aerial Systems (UAVs) 
with advanced sensor technologies has significantly 
transformed archaeological survey methods. Remote Sensing 
enables precise and efficient detection and analysis of 
ancient architectural remains [1]. This study explores the 
integration of UAV Red Green Blue (RGB) 
photogrammetry, Thermal (TIR), and Light Detection and 
Ranging (LiDAR) data into the process of the archaeological 
surveying. 

The case study is the prehistoric site of Thermi in Lesvos, 
located 10 km north of Mytilene. Inhabited from Early 
Bronze Age (ca. 3400 BCE) to a period contemporaneous 
with Troy II (ca. 2000 BCE or later) [2] Thermi was 
excavated between 1926 and 1931, revealing five 
superimposed settlements with distinct architectural and 
ceramic phases. These ranged from large, well-constructed 
towns to later settlements with more impact layouts with 
semi-apsidal structures. The southwestern part of the site is 
exposed, maintained, and open to the public, while the 
northeastern section was buried by W. Lamb around 1931. 

II. UAV REMOTE SENSING IN ARCHAEOLOGY 

Aerial Archaeology is a specialized field within remote 
sensing that focuses on observing landscapes [3] to identify, 
confirm and analyze ancient artifacts and their spatial 
relationships. The practice in this field has been made easier 
and cost-effective by using commercially available UAVs. 
Equipped with high-resolution RGB, thermal and 
multispectral sensors, UAVs capture detailed surface 
characteristics, temperature variations, and vegetation 
indices, improving archaeological surveys.  

Optimized UAV flight parameters ensure high-
resolution data. Photogrammetry produces 3D models and 
orthomosaics for site and landscape documentation. LiDAR 

enables sub-canopy mapping and enhances 3D 
reconstructions while thermal data reveal soil anomalies 
linked to buried structures, and multispectral imaging shows 
interactions between vegetation and archaeological remains 
[4]. Geographic Information System (GIS) software is used 
for spatial analysis, risk assessment, and conservation 
planning of areas with cultural interest.  

Despite its advantages, UAV-based remote sensing in 
archaeology faces challenges and debates While UAVs are 
cost-effective in human labor, high-end remote sensing 
sensors and data processing require significant investment 
[5]. The optimal timing for UAV surveys remains contested; 
post-sunset is generally preferred for thermal imaging, but 
studies also report midday effectiveness depending on 
environmental conditions [6], [7]. Furthermore, researchers 
debate about whether these datasets can yield reliable results 
as standalone methodologies or if an integration of these data 
is preferable for more accurate interpretations [8]. 

III. METHODOLOGY 

A. Data Acquisition 

The flight plans for data acquisition were designed based 
on bibliographical examples and the specifications of each 
UAV, and its sensors to minimize the required flights. The 
flight with the thermal sensor was executed on 15/11/2024 at 
11:46 after a day of rainfall with a DJI Matrice 300 RTK 
equipped with the Zenmuse H20T. The RGB flight 
performed the same day at 12:27 with a DJI Mavic 3E RTK, 
a cloudy sky, and minimal shadowing. The LiDAR flight 
performed on 5/12/2024 at 10:17 with a DJI Matrice 300 
RTK and a Zenmuse L1 sensor. Twenty-two Ground Control 
Points (GCPs) were taken to verify the UAVs RTK accuracy. 
The flight plans were designed through the DJI Pilot apps 
associated with each UAV and sensor model from their 
dedicated controllers. 

B. Data Processing 

Each dataset was photogrammetrically processed, 
generating georeferenced orthomosaics. The RGB photos 
were aligned creating a high-resolution base map with a cell 
size 0.019 m. The produced orthomosaic was the visual and 
geographical reference for the next steps of the process (Fig. 
1 A).  

LiDAR produced a raw point cloud with a 501 pts/m2 
density (Fig. 1 B). Using CloudCompare software, the noise 
was removed by applying the Statistical Outlier Removal 
(SOR) filter, while the Cloth Simulation Filter (CSF) [9] 
plugin separated ground and off-ground points. The 
classified ground cloud was rasterized with a grid step of 
0.05m. and linear interpolation to produce a Digital Terrain 
Model (DTM). 

Thermal dataset was pre-processed with DJI thermal 
SDK library to extract temperature for each image. 



Subsequently, the same photogrammetric workflow applied 
to RGB dataset was used resulting in the generation of a 
thermal orthomosaic. The temperature values on the thermal 
orthomosaic ranged from -5.45 C0 to 37.11 C0, an unusually 
large range for both the season and the area. The most 
distorted thermal readings were observed in urban sections 
due to buildings, rooftops, and the heat emitted by vehicles. 
After masking these distortions, the thermal range of the area 
ranged from 7.5 to 30°C (Fig.1 C). 

To quantitatively assess the thermal variations, the study 
area was split into three zones: a) Exposed Structures, b) 
Buried Structures, and c) Control areas, which are the areas 
where it is known that there aren’t any archaeological 
remains. Descriptive statistics are provided for each of these 
area types (Table I).  

Table 1 

Pixels with abrupt 3-4 C0 deviations from their neighbors 
were isolated [11] and vectorized into points. Points located 
in shadows or near transitional urban-natural edges were 
manually removed, retaining only the thermal drop points 
that had no apparent surface causes. A Kernel Density map 
was then estimated to visualize the spatial clustering of these 
thermal fluctuations, highlighting zones that correlated with 
both visible and subsurface architectural remains. Based on 
comparisons between Lamb’s architectural plans and the 
surface elevation derived from the LiDAR-based DEM, the 
subsurface features appear to be located at a maximum depth 
of 50 cm. 

IV. RESULTS 

The RGB orthomosaic is used as a high-resolution base 
map. Intergrading topographical drawings of the Lesvos’ 
Ephorate of Antiquities and the RGB dataset helped with 
classifying the exposed archaeological features based on the 
period and the settlement phases they belong to. It also 
served as a foundation for overlaying thermal, and LiDAR 
outputs, enabling cross-validation of anomalies (Fig. 2). 

On the other hand, the surface visibility of thermal 
contrasts indicating buried features is influenced by several 
key factors, including the difference in thermal inertia 

between the archaeological remains and the surrounding soil 
[12]. The highest mean temperature was observed over 
Buried Structures, indicating higher thermal inertia in this 
zone. This supports the hypothesis that subsurface features 
retain heat longer than surrounding areas and create 
detectable anomalies in the thermal dataset. The Exposed 
Structures zone has a moderate temperature variation with a 
Mean of 16.52 C0 but shows a higher SD at 2.27 C0 and a CV 
of 14.05% due to the material variability and their direct 
solar exposure. The biggest variability with a CV of 14.05%, 
accompanied by the lowest mean temperature of 14.71 C0 is 
shown in the Control Areas zone where soil moisture and 
vegetation are the only factors present (Fig. 3).  

These statistical findings provide a quantitative basis for 
analyzing the spatial distribution of thermal anomalies, 
which is further examined through Kernel Density Analysis 
mapping. Identifying and vectorizing the thermal anomaly 
points, facilitated the creation of a Kernel Density map, 
revealing “hotspots” with the highest concentration of 
thermal fluctuations (Fig. 4). The hotspots spatially 
correlated with the visible architectural remains, reinforcing 
that standing walls and exposed features influence local heat 
retention and dissipation rates. Additionally, anomalies were 
concentrated in the northeastern zone suggesting the 
presence of underlying walls and foundations, aligning with 
the area of known buried structures. 

V. DISCUSSION 

The 3-4 C0 temperature fluctuations are consistent with 
previous research on thermal inertia in archaeological 
contexts [13]. Rainfall before data acquisition enhanced the 
contrast between buried structures and adjacent soils 
improving feature detectability. LiDAR-derived DTM with 
RGB orthomosaic improved the accuracy of archaeological 
feature identification. Subtle elevation changes, not visible 
through RGB alone, aligned with thermal anomalies and 
supported the interpretation of buried archaeological 
features. 

This hybrid approach (RGB, LiDAR, Thermal) shows 
greater efficacy than relying on a single technology alone 
[8]. It compensates for individual weaknesses while offering 
a boarder perspective on the above and below ground 
features. Although midday flights are sometimes less favored 
for thermal imaging, local climate and recent precipitation 
here actually improved feature visibility, indicating that ideal 

Regions Thermal Values on C0 
 

RANGE MEAN SD CV 

Exposed Structures 15.43 16.52 2.27 13.76 % 

Buried Structures 17.12 18.43 1.64 8.90 % 

Control Areas 16.17 14.71 2.07 14.05 % 

 
Fig. 1 A) RGB orthomosaic, B) Point Cloud from the LiDAR 

dataset, C) Thermal Orthomosaic. 

 
 

 
Fig. 2 RGB base map with DEM and Archaeological site 

Classification. 



flight schedules can vary based on site-specific factors. 

This methodology highlights the importance of adaptive 
flight planning, even when unconventional, as demonstrated 
by climatic conditions like the post-rainfall flight executed 
during this research. It also shows the importance of 
integrating multi-sensor data. The correlation between 
thermal hotspots and microtopography helps mitigate 
misinterpretations of the results and the limitations of 
standalone remote sensing techniques. 

V. CONCLUSIONS 

A UAV-based multi-sensor data combination, adapted to 
local environmental conditions, can overcome single-sensor 
limitations in aerial archaeology. The methodology linking 
visible RGB data, the Law of Thermal Inertia, and subtle 
elevation changes provides a framework for noninvasive 
prospection of buried features at a depth of a maximum of 
50cm from the surface. 

Thermal anomalies variability are the most significant 
parameters to consider for locating subsurface structures. 
Adaptive flight planning managed to enhance the anomalies 
and data combination highlighted the overlapping anomalies 
from each sensor type. It also shows that site location and 
climate conditions are important factors to be considered 
before starting the survey process. 

Further refinement is needed in automated anomaly 
classification. Machine learning and predictive modeling 
could be implemented for more reliability of thermal 
anomaly detection [4]. Seasonal data could also provide 

further insights into how environmental variables influence 
the visibility of subsurface structures. Integrating 
multispectral data can also add to the interactive relationship 
between vegetation and subsurface structures. 
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Fig. 3 Visualization of the Zonal Statistics and the Kernel Density 

Analysis. 

 
 

 

 
Fig. 4 Kernel Density Analysis Map. 

 



 


